FEUILLE D'EXERCICES N°6

Groupes cycliques, groupe symétrique

Tables de groupes finis

Exercice 1. Soit $A = \{0 \mod 4, 1 \mod 4, 2 \mod 4, 3 \mod 4\}$.

- 1) Dresser la table de l'addition dans A. L'ensemble A muni de l'addition est-il un groupe?
- 2) Dresser la table de la multiplication dans A. L'ensemble A muni de la multiplication est-il un groupe?

Exercice 2.

- 1) Soit G un groupe multiplicatif, et $a \in G$. Démontrer que l'application $f_a : x \mapsto ax$ de G dans G est bijective. Même question pour $h_a : x \mapsto xa$.
- 2) En déduire que la table de la loi d'un groupe fini est un carré latin, c'est-à-dire que, dans chaque colonne et chaque ligne, chaque élément du groupe apparaît une et une seule fois.
- 3) Les tables suivantes correspondent-elles à des lois de groupes sur $\{a, b, c\}$?

GROUPES CYCLIQUES

Exercice 3. Soit n un entier ≥ 1 . Le groupe multiplicatif \mathbb{U}_n des racines nèmes de l'unité est formé des $e^{2ik\pi/n}$, pour $0 \leq k \leq n-1$.

- 1) Démontrer que \mathbb{U}_n est cyclique. En donner un générateur.
- 2) Soit $k \in \mathbb{N}^*$. On note z un générateur de \mathbb{U}_n .
 - a) Démontrer que si z^k engendre \mathbb{U}_n , alors k et n sont premiers entre eux (on pourra raisonner par l'absurde et supposer que k et n ont un pgcd d > 1).
 - b) On suppose k et n premiers entre eux. Démontrer qu'un entier m vérifie $(z^k)^m = 1$ si et seulement si n divise m. En déduire l'ordre de z^k . En déduire que z^k engendre \mathbb{U}_n .
- 3) En utilisant la question 2), déterminer tous les générateurs de \mathbb{U}_n . Etablir la liste pour n=5 et n=6.

Exercice 4. Soit G un groupe de cardinal p premier. Démontrer que G est cyclique et engendré par n'importe quel élément de G distinct du neutre.

Exercice 5. Soient G et H deux groupes cycliques, d'ordres respectifs n et m premiers entre eux. Démontrer que le groupe $G \times H$ est cyclique (on pourra montrer que si x désigne un générateur de G et y un générateur de H, alors (x, y) est d'ordre nm).

GROUPE SYMÉTRIQUE

Exercice 6. On considère dans S_6 les permutations suivantes :

$$x = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 6 & 3 & 5 & 1 \end{pmatrix} \qquad y = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 6 & 4 \end{pmatrix} \qquad z = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 3 & 4 & 2 & 6 \end{pmatrix}$$

- 1) Calculer les permutations $x \circ y$ et $x \circ z$.
- 2) Quels sont les supports de $x, y, z, x \circ y$ et $x \circ z$?
- 3) Est-ce que x et z commutent? Est-ce que x et y commutent?

Exercice 7. Démontrer que pour $n \geq 3$, le groupe S_n n'est pas commutatif.

Exercice 8. Soit G un groupe fini, et S_G l'ensemble des applications bijectives de G dans G. On rappelle que c'est un groupe pour la loi de composition. L'application $f_a: x \mapsto ax$ de G dans G est bijective (voir exercice 2).

1) Démontrer que l'application :

$$f: G \to \mathcal{S}_G$$

$$a \mapsto f_a$$

est un morphisme de groupes injectif.

2) En déduire que G est isomorphe à un sous-groupe de S_G (théorème de Cayley).

Exercice 9. On considère le groupe symétrique S_n d'ordre n.

- 1) Rappeler quel est l'ordre d'un cycle $c=(a_1\ a_2\ \dots\ a_k)$ de longueur k, où $k\leq n.$
- 2) Soient c_1 et c_2 deux cycles de supports disjoints et d'ordres respectifs m et p. Démontrer que l'ordre de c_1c_2 est ppcm(m, p).
- 3) Écrire les permutations x et z de l'exercice 6 sous forme de cycles. En déduire sans calcul les ordres de x, z et $x \circ z$.

Exercise 10. Soient $G = \{id, (12)(34), (13)(24), (14)(23)\}\$ et $H = \{id, (1234), (13)(24), (1432)\}.$

- 1) Démontrer que G et H sont des sous-groupes de S_4 .
- 2) Soit f un morphisme de groupes de G dans H. Démontrer que pour tout $s \in G$, $f(s)^2 = id$.
- 3) En déduire que les groupes G et H ne sont pas isomorphes.