Complément

Groupes cycliques

Rappel : Soit G un groupe fini de neutre 1. Si a est un élément de G, a > désigne le sous-groupe de G engendré par a. C'est l'ensemble $\{a^m \mid m \in \mathbb{Z}\}$. Si n désigne l'ordre de a, alors ce sous-groupe est $a > \{1, a, a^2, \ldots, a^{n-1}\}$ (remarquer que a >est d'ordre a >Cas particulier : si a = 1 alors a >est d'ordre a >

De façon générale, $\langle a \rangle$ est un sous-ensemble de G, pas forcément égal à G.

Définition. Un groupe fini G est cyclique s'il existe un élément $a \in G$ tels que a >= G. Cela signifie qu'il existe un élément a de G qui engendre G tout entier. Un tel élément a est appelé un générateur de G.

Exemple 0. Soit G un groupe fini et a un élément de G. Regardons le sous-groupe < a > de G comme un groupe. Alors c'est un groupe cyclique car il est engendré par l'élément a.

Exemple 1. (Feuille 6, exercice 10). Soit $H = \{id, (1234), (13)(24), (1432)\}$. Alors H est un groupe cyclique. En effet, si on note $\sigma = (1234)$, alors un calcul montre que $\sigma^2 = (13)(24)$, $\sigma^3 = (1432)$ et $\sigma^4 = id$. Donc σ est d'ordre 4 et $H = \{id, \sigma, \sigma^2, \sigma^3\} = \langle \sigma \rangle$.

Contre-exemple. (Feuille 6, exercice 10). Soit $G = \{id, (12)(34), (13)(24), (14)(23)\}$. Ce n'est pas un groupe cyclique. En effet :

- id est d'ordre 1 donc $\langle id \rangle = \{id\} \subsetneq G$
- (12)(34) est d'ordre 2 (c'est un produit de 2-cycles de supports disjoints), donc < (12)(34) > est formé de deux éléments. On a < (12)(34) $> \subseteq G$.
- idem pour (13)(24) et (14)(23).

Exemple 2. (Feuille 6, exercice 3). Soit n un entier ≥ 1 . Le groupe multiplicatif \mathbb{U}_n des racines nèmes de l'unité est formé de $1, e^{\frac{2i\pi}{n}}, e^{\frac{2\cdot 2i\pi}{n}}, \ldots, e^{\frac{(n-1)2i\pi}{n}}$. Démontrons que c'est un groupe cyclique. Posons $z=e^{\frac{2i\pi}{n}}$. Alors z est d'ordre n car z,z^2,\ldots,z^{n-1} sont distincts de 1 et $z^n=1$. De plus, on remarque que $1=z^0, e^{\frac{2i\pi}{n}}=z, e^{\frac{2\cdot 2i\pi}{n}}=z^2,\ldots, e^{\frac{(n-1)\cdot 2i\pi}{n}}=z^{n-1}$. Donc $\mathbb{U}_n=\{1,z,z^2,\ldots,z^{n-1}\}$. Comme z est d'ordre $n,< z>=\{1,z,z^2,\ldots,z^{n-1}\}$. Donc $\mathbb{U}_n=< z>$. Ceci montre que \mathbb{U}_n est cyclique et engendré par z.

En particulier, z est un générateur de \mathbb{U}_n . L'objet de la question 2 de l'exercice est de déterminer tous les générateurs de \mathbb{U}_n .

Exemple 3. (Feuille 6, exercice 4). Soit G un groupe de cardinal p premier. Démontrons que G est cyclique et engendré par n'importe quel élément de G distinct du neutre. Soit $x \in G$, $x \neq e$. Alors < x > est un sous-groupe de G. D'après le théorème de Lagrange, $\operatorname{Card}(< x >)$ divise $\operatorname{Card}(G) = p$. Comme p est premier, $\operatorname{Card}(< x >)$ vaut 1 ou p.

Supposons Card(< x >) = 1. Comme $e \in < x >$, on a < x > = $\{e\}$, donc x = e ce qui est exclu.

Donc Card(< x >) = p. Finalement, on a une inclusion $< x > \subset G$ et une égalité des cardinaux, donc < x > = G. C'est le résultat souhaité.

Résultat. Soit G un groupe fini d'ordre n. Alors G est cyclique si et seulement s'il existe un élément a de G d'ordre n.

Preuve. Supposons G cyclique. Alors il existe $a \in G$ tel que $G = \langle a \rangle$. Donc $\langle a \rangle$ est d'ordre n. Donc l'élément a est d'ordre n. Réciproquement, supposons qu'il existe a dans G d'ordre n. Alors $\langle a \rangle$ est un sous-groupe de G d'ordre n, donc par égalité de cardinal, $\langle a \rangle = G$. Ceci montre que G est cyclique.

Résultat. Tout sous-groupe d'un groupe cyclique est cyclique.

Exemple 4. (Feuille 6 exercice 5). Si G et H sont deux groupes cycliques, alors le groupe produit $G \times H$ est cyclique.