C. Armana armana@math.jussieu.fr

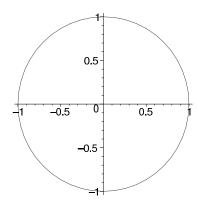
MK1 "Calcul formel" Maple

TP7 : Courbes paramétrées, courbes polaires

But du TP7

Nous avons déjà vu comment tracer des courbes représentatives de fonctions dans Maple. Aujourd'hui, nous allons explorer les possibilités de Maple de tracer d'autres types de courbes : courbes paramétrées, courbes polaires.

Et surtout, n'oubliez pas de vous (et de me) poser des questions !


1. Les courbes paramétrées

Pour tracer une courbe paramétrée donnée par M(t) = (x(t), y(t)), on utilise (encore!) la commande *plot*. Par exemple, pour $x(t) = \cos(t)$ et $y(t) = \sin(t)$:

[> restart;

[> ?plot[parametric]

> plot([sin(t), cos(t), t=0..2*Pi]);

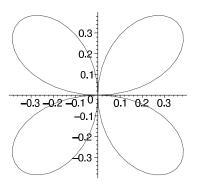
Notez bien la position des crochets dans la syntaxe!

Exemple de plan d'étude d'une courbe paramétrée :

1) Intervalle de définition en *t* Périodicité éventuelle

Symétries éventuelles de la courbe

- -> déterminer un intervalle d'étude minimal
- 2) Limites de x et y aux bornes des intervalles d'étude
- 3) Etude des branches infinies : recherche d'asymptotes, de branches paraboliques
- 4) Etude des variations de x et y et des points singuliers (x'(t)=y'(t)=0)
- 5) Tracé
- 6) Détermination des points doubles éventuels (M(u) = M(v) avec $u \neq v$).


2. Les courbes polaires

Une courbe polaire est donnée par une équation de la forme $\rho = r(\theta)$. Elle s'obtient en plaçant dan le plan les points de coordonnées ($r(\theta)\cos(\theta)$, $r(\theta)\sin(\theta)$). Une courbe polaire est donc une courbe paramétrée. Pour tracer une courbe polaire dans Maple, on utilise la commande *plot* avec l'option *coords* = *polar*.

[> ?plot[polar]

 $[\rho = \sin(\theta)\cos(\theta):$

> plot([sin(t)*cos(t),t,t=0..2*Pi],coords=polar);

[Pouvez-vous devinez l'allure des courbes polaires suivantes avant de les tracer ?

[
$$\rho$$
=1:
[> plot([1,t,t=0..2*Pi],coords=polar);
[ρ =0:
[> plot([t,t,t=0..10],coords=polar);
[ρ = ∞ (θ):
[> plot([cos(t),t,t=0..Pi],coords=polar);

La feuille d'érable de Maple : tracer la courbe polaire suivante: $\rho = \frac{2 - \sin(7 \theta) - \cos\left(\frac{30 \theta}{2}\right)}{100 + \left(\theta - \frac{\pi}{2}\right)^8}$

pour θ dans
$$\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$$
 et en fixant *numpoints* à 500.

MK1 - Maple

FEUILLE D'EXERCICES N°7

valle d'étude et les symétries; étudier les limites, branches infinies, variations et points doubles avec Maple (si possible). Vérifier vos résultats en traçant la courbe et ses asymp-Etudier les courbes paramétrées suivantes : déterminer à la main l'intertotes sur un même graphique (charger la librairie plots et utiliser sa commande display). EXERCICE 1.

1.
$$\begin{cases} x(t) = \sin 2t & 4. \\ y(t) = \cos 2t & 4. \end{cases} \begin{cases} x(t) = \cos(t) \\ y(t) = \cos(3t/5) \end{cases}$$
2.
$$\begin{cases} x(t) = \cos t & 5. \\ y(t) = (1 + \cos t) \sin t & 5. \\ x(t) = t + 1/t \end{cases}$$
3.
$$\begin{cases} x(t) = t/\ln t & 6. \\ x(t) = 2t + t^2 \end{cases}$$
3.
$$\begin{cases} x(t) = t/(t-1) & 6. \end{cases} \begin{cases} x(t) = 2t + t^2 \end{cases}$$

-3 et Tracer la courbe paramétrée définie par $x(t) = t^3 - 4t$, $y(t) = 2t^2$ calculer l'angle formé par les tangentes au point double. EXERCICE 2.

le lieu des points du plan d'où l'on peut mener (au moins) deux tangentes à $\mathcal C$ orthogonales Tracer la courbe paramétrée $\mathcal C$ définie par $x(t)=t^2,\,y(t)=t^3.$ Déterminer et le tracer. On appelle ce lieu la courbe orthoptique de \mathcal{C} . EXERCICE 3.

la courbe sur sa période minimale pour a = 1. Animer la courbe en faisant varier a entre On considère l'astroïde définie par $x(t) = a\cos^3 t$, $y(t) = a\sin^3 t$. Tracer dans un intervalle au choix (librairie plots, commande animate). EXERCICE 4.

Etude de la courbe polaire définie par $\rho = \sin(3\theta/2)$. EXERCICE 5.

- 1) Calculer à la main la période de la courbe et la tracer sur cette période.
- 2) Déterminer à la main les symétries de la courbe. Qu'en déduisez-vous sur l'intervalle d'étude? Tracer la courbe sur l'intervalle minimal.