Quelques corrections pour la feuille d'exercices no 5 PREMIÈRE PARTIE

Il s'agit de la deuxième version de cette feuille. Quelques erreurs ont été corrigées par rapport à la première.

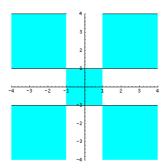
Exercice 1. Les domaines de définition des cinq premières fonctions ont été vus en TD.

 $f_6(x,y) = \sqrt{(1-x^2)(1-y^2)}$. Le domaine de définition \mathcal{D} de f_6 est l'ensemble des couples $(x,y) \in \mathbb{R} \times \mathbb{R}$ tels que $f_6(x,y)$ soit bien défini, c'est-à-dire tels que $(1-x^2)(1-y^2) \ge 0$. Cette condition équivaut à :

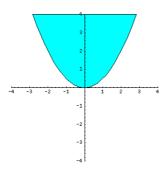
$$(1 - x^2 \ge 0 \text{ et } 1 - y^2 \ge 0) \text{ ou } (1 - x^2 \le 0 \text{ et } 1 - y^2 \le 0)$$

c'est-à-dire : $(x \in [-1, 1] \text{ et } y \in [-1, 1])$ ou $(x \in]-\infty, -1] \cup [1, +\infty[\text{ et } y \in]-\infty, -1] \cup [1, +\infty[)$. En d'autres termes, \mathcal{D} est la réunion des cinq parties suivantes de \mathbb{R}^2 :

$$\begin{array}{ll} \mathcal{D}_1 = [-1,1] \times [-1,1] & \mathcal{D}_2 =]-\infty,-1] \times]-\infty,-1] \\ \mathcal{D}_3 =]-\infty,-1] \times [1,+\infty[& \mathcal{D}_4 = [1,+\infty[\times]-\infty,-1] \\ \mathcal{D}_5 = [1,+\infty[\times [1,+\infty[&]-\infty,-1] \\ \end{array}]$$

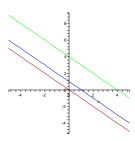


 $f_7(x,y) = \sqrt{\frac{y^2}{2y-x^2}}$. Le domaine de définition \mathcal{D} de f_6 est l'ensemble des couples $(x,y) \in \mathbb{R} \times \mathbb{R}$ tels que $f_7(x,y)$ soit bien défini. Comme $y^2 \geqslant 0$, c'est l'ensemble des $(x,y) \in \mathbb{R}^2$ vérifiant $2y - x^2 > 0$. Le « bord » du domaine est déterminé par l'équation $2y = x^2$, c'est-à-dire $y = \frac{x^2}{2}$. C'est l'équation d'une parabole de sommet (0,0). Le domaine \mathcal{D} est l'ensemble des points du plan situés strictement au-dessus de cette parabole.

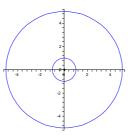


Lignes de niveau.

Soit $c \in \mathbb{R}$ quelconque. Pour (x,y) dans le domaine de définition de f_1 , l'équation $f_1(x,y) = \sqrt{x+y} = c$ équivaut à $x+y=c^2$ c'est-à-dire $y=c^2-x$. C'est l'équation cartésienne d'une droite dans le plan. Les lignes de niveau 0, 1 et 2 sont les droites d'équation y=-x, y=1-x, y=4-x. Remarquons que ces droites sont parallèles (elles ont le même coefficient directeur).

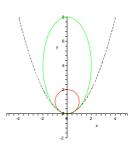


Pour (x,y) dans le domaine de définition de f_3 , l'équation $f_3(x,y) = \sqrt{x^2 + y^2 - 1} = c$ équivaut à $x^2 + y^2 - 1 = c^2$ c'est-à-dire $x^2 + y^2 = c^2 + 1$. C'est l'équation cartésienne du cercle de centre (0,0) et de rayon $\sqrt{c^2 + 1}$. Rappel : l'équation cartésienne du cercle de centre le point de coordonnées (a,b) et de rayon R>0 est $(x-a)^2 + (y-b)^2 = R^2.$



Pour (x,y) dans le domaine de définition de f_7 , l'équation $f_7(x,y) = \sqrt{\frac{y^2}{2y-x^2}} = c$ équivaut à $\frac{y^2}{2y-x^2} = c^2$ c'est-à-dire $c^2x^2 + y^2 - 2yc^2 = 0$. On peut l'écrire encore $c^2x^2 + (y-c^2)^2 - c^4 = 0$ c'est-à-dire $c^2x^2 + (y-c^2)^2 = c^4$. Si c=0, cela équivaut à y=0 (donc x=0, puisque (x,y) est dans le domaine de f_7) donc la ligne de niveau 0 est le point (0,0).

Si c=1, cela donne $x^2+(y-1)^2=1$ qui est l'équation du cercle de centre (0,1) et de rayon 1. Si c=2, cela donne $4x^2+(y-4)^2=16$. On peut l'écrire $\frac{x^2}{4}+\frac{(y-4)^2}{16}=1$. C'est l'équation de l'ellipse de centre (0,4), de grand axe parallèle à l'axe des ordonnées, de demi-grand axe 4 et de demi-petit axe 2.



Exercice 3.

- 1) f(x,y) = xy. Voir la feuille d'instructions pour la feuille 5.
- 2) $f(x,y) = \arctan(x-3y^2)$. La fonction arctan est définie sur \mathbb{R} , donc le domaine de définition de f est \mathbb{R}^2 . De plus, la fonction arctan est dérivable sur \mathbb{R} donc pour tout $y \in \mathbb{R}$, la fonction $x \mapsto \arctan(x - 3y^2)$ est dérivable sur \mathbb{R} ; de même pour tout $x \in \mathbb{R}$, la fonction $y \mapsto \arctan(x-3y^2)$ est dérivable sur \mathbb{R} . Donc

la fonction f a des dérivées partielles en tout point $(x,y) \in \mathbb{R}^2$. Calculons ces dérivées. On rappelle que $\arctan'(x) = \frac{1}{1+x^2}$. On a, en utilisant le théorème de dérivation des fonctions composées,

$$\frac{\partial f}{\partial x}(x,y) = \frac{\frac{\partial (x-3y^2)}{\partial x}(x,y)}{1+(x-3y^2)^2} = \frac{1}{1+(x-3y^2)^2}$$
$$\frac{\partial f}{\partial y}(x,y) = \frac{\frac{\partial (x-3y^2)}{\partial y}(x,y)}{1+(x-3y^2)^2} = \frac{-6y}{1+(x-3y^2)^2}$$

3) $f(x,y) = e^{xy}\sin(x+y)$. Les fonctions exponentielle et sinus sont définies sur \mathbb{R} , donc le domaine de définition de f est \mathbb{R}^2 . Comme les fonctions exp et sin sont dérivables sur \mathbb{R} , pour tout $y \in \mathbb{R}$, la fonction $x \mapsto e^{xy}\sin(x+y)$ est dérivable sur \mathbb{R} ; de même pour tout $x \in \mathbb{R}$, la fonction $ye^{xy}\sin(x+y)$ est dérivable sur \mathbb{R} . Donc la fonction f a des dérivées partielles en tout point $(x,y) \in \mathbb{R}^2$. En utilisant la formule pour la dérivée d'un produit de fonctions,

$$\frac{\partial f}{\partial x}(x,y) = ye^{xy}\sin(x+y) + e^{xy}\cos(x+y) = e^{xy}(y\sin(x+y) + \cos(x+y))$$
$$\frac{\partial f}{\partial y}(x,y) = xe^{xy}\sin(x+y) + e^{xy}\cos(x+y) = e^{xy}(x\sin(x+y) + \cos(x+y))$$

4) $f(x,y) = x^y = e^{y\ln(x)}$. Le domaine de définition de f est l'ensemble D des $(x,y) \in \mathbb{R}^2$ vérifiant x > 0. Pour tout y dans \mathbb{R} , la fonction $x \mapsto e^{y\ln(x)}$ est dérivable sur $]0, +\infty[$ (comme composée de fonctions dérivables). De même, pour tout x > 0, la fonction $y \mapsto e^{y\ln(x)}$ est dérivable sur \mathbb{R} . Donc la fonction f a des dérivées partielles en tout point (x,y) de D. De plus, par le théorème de dérivation des fonctions composées,

$$\begin{split} \frac{\partial f}{\partial x}(x,y) &= \frac{\partial (y \ln(x))}{\partial x} e^{y \ln(x)} = \frac{y}{x} e^{y \ln(x)} = \frac{y}{x} x^y \\ \frac{\partial f}{\partial y}(x,y) &= \frac{\partial (y \ln(x))}{\partial y} e^{y \ln(x)} = \ln(x) e^{y \ln(x)} = \ln(x) x^y. \end{split}$$

Exercice 8.

1) $f(x,y) = \frac{x^2+y^2}{xy}$, a=(1,2). La fonction f est définie sur $D=\mathbb{R}^2-\{(0,0)\}$. Elle est continue et dérivable sur D comme quotient de telles fonctions dont le dénominateur ne s'annule pas. En particulier, f est dérivable en (a,b). On a

$$\begin{array}{l} f(1,2) = \frac{5}{2} \\ \frac{\partial f}{\partial x}(x,y) = \frac{2x \cdot xy - (x^2 + y^2)y}{x^2y^2} = \frac{x^2y - y^3}{x^2y^2} = \frac{x^2 - y^2}{x^2y} \quad \frac{\partial f}{\partial x}(1,2) = -\frac{3}{2} \\ \frac{\partial f}{\partial y}(x,y) = \frac{2y \cdot xy - (x^2 + y^2)x}{x^2y^2} = \frac{y^2x - x^3}{x^2y^2} = \frac{y^2 - x^2}{xy^2} \quad \frac{\partial f}{\partial y}(1,2) = \frac{3}{4}. \end{array}$$

Donc l'équation du plan tangent à la surface z=f(x,y) est : $z=\frac{5}{2}-\frac{3}{2}(x-1)+\frac{3}{4}(y-2)$.

Rappel : vecteur normal à un plan P. Par définition, c'est un vecteur directeur d'une droite orthogonale au plan P. Si le plan P a pour équation cartésienne ax + by + cz + d = 0, alors un vecteur normal

à P est le vecteur de coordonnées $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$. Ici, un vecteur normal à P est $\begin{pmatrix} -\frac{3}{2} \\ \frac{3}{4} \\ -1 \end{pmatrix}$.

2) $f(x,y) = e^x y$, a = (-1,1). La fonction f est définie et dérivable sur \mathbb{R}^2 , comme produit de fonctions dérivables sur \mathbb{R}^2 . En particulier, f est dérivable en (-1,1). On a

$$f(-1,1) = e^{-1}$$

$$\frac{\partial f}{\partial x}(x,y) = e^{x}y \quad \frac{\partial f}{\partial x}(-1,1) = e^{-1}$$

$$\frac{\partial f}{\partial y}(x,y) = e^{x} \quad \frac{\partial f}{\partial x}(-1,1) = e^{-1}$$

Donc l'équation du plan tangent à la surface z = f(x,y) est : $z = e^{-1} + e^{-1}(x+1) + e^{-1}(y-1)$. Un vecteur normal au plan est $\begin{pmatrix} e^{-1} \\ e^{-1} \\ -1 \end{pmatrix}$.

3) $f(x,y) = \sqrt{x^2 - y^4}$, a = (2,1). La fonction f est définie en a (car $2^2 - 1^4 \ge 0$) et même dérivable en a comme composée de fonctions dérivables (la fonction $\sqrt{}$ est dérivable sur $]0, +\infty[$ et $2^2 - 1^4 = 3 > 0$). On a

$$f(2,1) = \sqrt{3}$$

$$\frac{\partial f}{\partial x}(x,y) = \frac{x}{\sqrt{x^2 - y^4}} \quad \frac{\partial f}{\partial x}(2,1) = \frac{2}{\sqrt{3}}$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{-2y^3}{\sqrt{x^2 - y^4}} \quad \frac{\partial f}{\partial x}(2,1) = -\frac{2}{\sqrt{3}}$$

(Rappel : si u est une fonction dérivable, la règle de dérivation des fonctions composées donne $(\sqrt{u})'(x) = \frac{u'(x)}{2\sqrt{u(x)}}$). Donc l'équation du plan tangent à la surface z = f(x,y) est : $z = \sqrt{3} + \frac{2}{\sqrt{3}}(x-2) - \frac{2}{\sqrt{3}}(y-1)$.

Un vecteur normal au plan est $\begin{pmatrix} \frac{2}{\sqrt{3}} \\ -\frac{2}{\sqrt{3}} \\ -1 \end{pmatrix}$.

4) $f(x,y) = \sqrt{(1-x^2)(1-y^2)}$, $a = (\sqrt{2}, \sqrt{2})$. La fonction f est définie en a et dérivable en a (argument similaire au précédent). On a

$$\begin{split} f(\sqrt{2},\sqrt{2}) &= 1\\ \frac{\partial f}{\partial x}(x,y) &= \frac{-2x(1-y^2)}{2\sqrt{(1-x^2)(1-y^2)}} = \frac{x(y^2-1)}{\sqrt{(1-x^2)(1-y^2)}} &\quad \frac{\partial f}{\partial x}(a) = \sqrt{2}\\ \frac{\partial f}{\partial y}(x,y) &= \frac{-2y(1-x^2)}{2\sqrt{(1-x^2)(1-y^2)}} = \frac{y(x^2-1)}{\sqrt{(1-x^2)(1-y^2)}} &\quad \frac{\partial f}{\partial y}(a) = \sqrt{2}. \end{split}$$

Donc l'équation du plan tangent à la surface z=f(x,y) est : $z=1+\sqrt{2}(x-\sqrt{2})+\sqrt{2}(y-\sqrt{2})$. Un vecteur normal au plan est $\begin{pmatrix} \sqrt{2} \\ \sqrt{2} \\ -1 \end{pmatrix}$.

Ci-dessous : pour la troisième fonction de l'exercice, la surface (en-dessous) et le plan tangent au point (au-dessus).

