Devoir surveillé

Mercredi 4 mars 2015

Durée: 3 heures

Aucun document, calculatrice, téléphone portable ni appareil électronique n'est autorisé. Toute réponse devra être justifiée avec rigueur, soin et concision.

Le sujet est recto-verso (deux pages)

Tous les anneaux sont supposés commutatifs et unitaires.

Exercice 1. Un idéal I d'un anneau est dit radical lorsque r(I) = I.

- 1) Montrer que tout idéal premier est radical.
- 2) Donner un exemple d'idéal propre radical non premier dans un anneau de votre choix.

Exercice 2. Soit I un idéal d'un anneau A.

- 1) Rappeler sans démonstration la description des idéaux de A/I.
- 2) En déduire une bijection entre Spec(A/I) et V(I).
- 3) Pour tout entier $n \geq 1$, montrer que le cardinal de $\operatorname{Spec}(\mathbb{Z}/n\mathbb{Z})$ est le nombre de facteurs premiers distincts de n.

Exercice 3. 1) Soient B_1 et B_2 des anneaux. Montrer que l'anneau produit $B_1 \times B_2$ est intègre si et seulement si :

$$(B_1 = \{0\} \text{ et } B_2 \text{ intègre}) \text{ ou } (B_1 \text{ intègre et } B_2 = \{0\}).$$

- 2) Soient A_1, A_2 des anneaux non nuls et l'anneau produit $A = A_1 \times A_2$. On rappelle que les idéaux de A sont de la forme $I_1 \times I_2$ où I_1 (resp. I_2) est un idéal de A_1 (resp. A_2).
 - (a) Caractériser les idéaux premiers de A et en déduire la partition :

Spec
$$A = S_1 \sqcup S_2$$

avec
$$S_1 = \{ \mathfrak{p} \times A_2 \mid \mathfrak{p} \in \operatorname{Spec} A_1 \}$$
 et $S_2 = \{ A_1 \times \mathfrak{q} \mid \mathfrak{q} \in \operatorname{Spec} A_2 \}$.

- (b) Rappeler la définition de la topologie de Zariski sur le spectre d'un anneau quelconque.
- (c) Montrer que l'espace topologique Spec A n'est pas connexe. Rappel : un espace topologique E est dit connexe s'il n'existe pas de partition de E en deux fermés non vides disjoints.

Exercice 4. Fixons un entier $n \geq 1$ et un corps algébriquement clos K. Soit A la K-algèbre $K[X_1, \ldots, X_n]$ des polynômes en les indéterminées X_1, \ldots, X_n à coefficients dans K.

Si T est une partie de A, on pose

$$Z(T) = \{ \alpha \in K^n \mid \forall P \in T, P(\alpha) = 0 \}.$$

Si Y est une partie de K^n , on pose

$$\mathcal{I}(Y) = \{ P \in A \mid \forall \alpha \in Y, P(\alpha) = 0 \}.$$

Les questions 4 et 5 peuvent être traitées de façon indépendante.

- 1) Soit T une partie de A. Notons I_T l'idéal de A engendré par T. Montrer que $Z(T) = Z(I_T)$.
- 2) Soit Y une partie de K^n . Montrer que $\mathcal{I}(Y)$ est un idéal de A.
- 3) Si une partie Y de K^n est réunion $Y_1 \cup Y_2$ de deux parties Y_1 et Y_2 de K^n , montrer que $\mathcal{I}(Y) = \mathcal{I}(Y_1) \cap \mathcal{I}(Y_2)$.
- 4) Soit I un idéal de A tel que Z(I) est fini non vide. On note $Z(I) = \{\alpha_1, \ldots, \alpha_t\}$ où $\alpha_1, \ldots, \alpha_t$ sont des éléments de K^n .
 - (a) À l'aide du théorème des zéros de Hilbert, montrer que $r(I) = I_1 \cap \cdots \cap I_t$ où I_j désigne l'idéal $\mathcal{I}(\alpha_j)$ pour tout j.
 - (b) Notons $\alpha_j = (a_{j,1}, \dots, a_{j,n}) \in K^n$. Montrer que pour tout $i \in \{1, \dots, n\}$, le polynôme $\prod_{k=1}^t (X_i a_{k,i})$ appartient à $I_1 \cap \dots \cap I_t$.
 - (c) En déduire l'existence, pour tout $i \in \{1, ..., n\}$, d'un polynôme $Q_i(X_i)$ de $K[X_i]$, unitaire et de degré ≥ 1 , tel que $Q_i(X_i) \in I$.
 - (d) Posons $d_i = \deg_{X_i} Q_i(X_i)$. Montrer que la famille

$$\{X_1^{m_1} \cdots X_n^{m_n} \bmod I \mid \forall i, \ 0 \le m_i < d_i\}$$

engendre A/I comme K-espace vectoriel. Conclure que le K-espace vectoriel A/I est de dimension finie.

5) Soit I un idéal de A tel que Z(I) est vide. Que peut-on en déduire sur I? Justifier que le K-espace vectoriel A/I est alors de dimension finie.

Commentaire. Cet exercice démontre que si Z(I) est fini, alors le K-espace vectoriel A/I est de dimension finie. La réciproque est vraie et se démontrerait avec un peu plus de travail.